

Caitlin Blain

Supervisor: Dr. Nick Shears

Co-supervisor: Dr. Alwyn Rees

Kelp forests

Highly productive primary producers

Alter abiotic and biotic variables

 Provide food and habitat for numerous species

Kelp forests

Productivity and distribution is:

- Temporally and spatially variable
- Effected by a range of biotic and abiotic variables

Anthropogenic induced shifts

- Fishing
- Eutrophication
- Coastal sedimentation
- Climate change
 - Warming sea temperature
 - Ocean acidification
 - Increased storm intensity and frequency
 - Rising sea levels

Rising sea levels and increased storm intensity and frequency

IPCC 2013

Increased sediment runoff and turbidity (Thrush et al. 2004)

Interactions with: farming logging development

Primary productivity

Light is critical driver of productivity

- Few studies investigate local variation in productivity with turbidity
- Important first step in predicting the effects of interacting stressors

Measured by:

- Growth
- Biomass accumulation
- Photosynthetic performance

Rodgers et al. 2015

Ecklonia radiata

Ecklonia radiata

Study sites

- Turbidity gradient
- ~100 km total span
- > 5 km between each site
- Rocky reef @ 10-m depth
- Similar wave exposure

Study sites: light

Light acclimation:

- Thallus morphology
- Pigment content and concentration
- Cellular arrangement and morphology
- Optimize photosynthetic efficiency and growth

Morphology

Outer gulf (clear waters)

Inner gulf (turbid waters)

Morphology

Biomass

Photorespirometry

Productivity

Net primary productivity

Biomass accumulation

Ecklonia canopy

Competition

Conclusions

- Despite lower light, adult *Eckloniα* are able to accumulate similar amounts of biomass
- Some acclimation in photosynthetic parameters and morphology, but estimates of NPP were much lower in more turbid waters
- Ecklonia at more turbid sites may be less resilient to stressors due to lower potential primary productivity

Concurrent research

- Investigate how productivity relates to other environmental variables
- Repeating field components
 - Seasonality
- In situ and lab experiments
 - Press vs pulse
 - Light x Nutrients

Thank you

- Dr. Nick Shears Royal Society of New Zealand Rutherford Discovery Fellowship
- Dr. Alwyn Rees
- Technical assistance Peter Browne, Errol Murray, John Atkins, Blake Seers, Brady Doak
- Field Assistance Leigh students, staff, and visiting researchers
- Photos and videos Brady Doak and Nick Shears

But what about other gradients?

Morphology

Environment

Productivity Model

NPP =
$$(P_{\text{max}} * 1 - e^{(-\alpha E/P_{\text{max}})} - R_d) * b$$

 P_{max} = photosynthetic rate at saturating irradiance

 α = photosynthetic efficiency

E = incident irradiance on the seafloor

b = macroalgal standing crop

 R_d = respiration rate in dark

Webb et al. 1974 Rodgers and Shears 2016